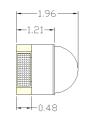
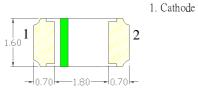


3.2x1.6 x1.96mm Infrared Dome Lens Chip LED

OSI5120631F

■Features


- Single chip
- Compact package outline (L x W x T) of 3.2mm x 1.6mm x 1.96mm
- Compatible to IR reflow soldering.
- Water Clear Lens Type


■Applications

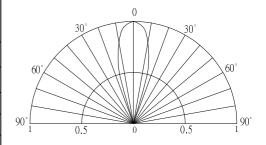
- Automatic Control System
- Photo Detector
- Computer I/O Peripheral

-1.50--1.80 3.20

■Outline Dimension

Unit:mm

- 2. Anode


Tolerance: 10mm unless otherwise noted

■Absolute Maximum Rating

(Ta=25℃)

Item Symbol Value Unit DC Forward Current 30 I_F mA Pulse Forward Current# I_{FP} 100 mΑ Reverse Voltage V_R 5 V Power Dissipation P_{D} 48 mW Operating Temperature Topr -30 ~ +85 $^{\circ}$ C Tstg °C Storage Temperature -40~ +100 Lead Soldering Temperature 260°C/10sec Tsol

■Directivity

#Pulse width Max 0.1ms, Duty ratio max 1/10

■Electrical -Optical Characteristics

(Ta=25℃)

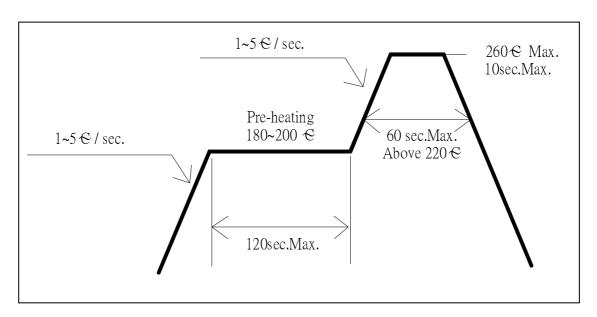
Symbol	Condition	Min.	Тур.	Max.	Unit
V_{F}	I _F =20mA	-	1.2	1.6	V
I_R	V _R =5V	-	-	10	μA
λ_p	I _F =20mA	-	940	-	nm
λ	I _F =20mA	-	45	-	nm
Ie	I _F =20mA	1.5	3	6	mW/Sr
2θ1/2	I _F =20mA	-	30	-	deg
	V_F I_R λ_p λ I_E	$\begin{array}{cccc} V_F & I_F \!\!=\!\! 20 mA \\ I_R & V_R \!\!=\!\! 5V \\ \lambda_p & I_F \!\!=\!\! 20 mA \\ \lambda & I_F \!\!=\!\! 20 mA \\ Ie & I_F \!\!=\!\! 20 mA \\ 2\theta 1/2 & I_F \!\!=\!\! 20 mA \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*1} Tolerance of measurements of forward voltage is ±0.1V

LED & Application Technologies

^{*2} Tolerance of measurements of Peak wavelength is +1nm

^{*3} Tolerance of measurements of radiant intensity is $\pm 15\%$


3.2x1.6 x1.96mm Infrared Dome Lens Chip LED

OSI5120631F

■ Soldering Conditions

Reflow Soldering		Hand Soldering		
Pre-Heat	180 ~ 200°C			
Pre-Heat Time	120 sec. Max.			
Peak temperature	260°C Max.	Temperature	350°C Max. 3 sec. Max.	
Dipping Time	10 sec. Max.	Soldering time		
Condition	Refer to Temperature-profile		(one time only)	

• Reflow Soldering Condition(Lead-free Solder)

- *Recommended soldering conditions vary according to the type of LED
- *Although the recommended soldering conditions are specified in the above table, reflow, or hand soldering at the lowest possible temperature is desirable for the LEDs.
- *A rapid-rate process is not recommended for cooling the LEDs down from the peak temperature.
- •All SMD LED products are pb-free soldering available.
- Occasionally there is a brightness decrease caused by the influence of heat or ambient atmosphere during air reflow. It is recommended that the User use the nitrogen reflow method.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than two times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

LED & Application Technologies

3.2x1.6 x1.96mm Infrared Dome Lens Chip LED

OSI5120631F

■ Cautions:

- 1. After open the package, the LED's floor life is 4 Weeks under 30℃ or less and 60%RH or less(MSL:2a).
- 2. Heat generation must be taken into design consideration when using the LED.
- 3. Power must be applied resistors for protection, over current would be caused the optic damage to the devices and wavelength shift.
- 4. Manual tip solder may cause the damage to Chip devices, so advised that heat of iron should be lower than 15W with temperature control under 5 seconds at 230-260 deg. C. (The device would be got damage in re working process, recommended under 5 seconds at 230-260 deg. C)
- 5. All equipment and machinery must be properly grounded. It is recommended to use a wristband or anti-electrostatic glove when handing the LED.
- 6. Use IPA as a solvent for cleaning the LED. The other solvent may dissolve the LED package and the epoxy, Ultrasonic cleaning should not be done.
- 7. Damaged LED will show unusual characteristics such as leak current remarkably increase, turn-on voltage becomes lower and the LED get unlight at low current.

LED & Application Technologies

